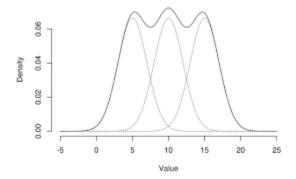
*Equations on slides

Gaussian Mixture Models(GMMs)

- More sophisticated and handles the problems of K-means
- Making the assumption of the underlying probability distribution of each data point. Ie calculates the probability a point belongs to a given clusters
 - Problems with K-means
 - Does not account for different cluster sizes, variances, and shapes
 - Does not allow points to belong to multiple clusters
 - Not Generative(It cannot create new data points)
 - Can put into clusters(discriminative)
 - We have to specify the K
 - Discriminative vs Generative Algorithms
 - Discriminative: Finds decision boundary
 - Ex: Logistic Regression, K-means
 - Generative: estimates probability distributions
 - Ex: Naive Bayes, GMMs
- Cluster sizes= How many data points belong to a cluster
 - How likely each of the clusters are
 - We want to maximize the likelihood of getting a data point
 - The goal is to find the model parameters that make the observed data most probable under the model
 - The GMM equation combines these Gaussian distributions, weighted by their respective mixing coefficients, to form the overall probability density function



Initialization Step:

- Probability: $\pi_k = 1/K$
- Mean: μ_k = choose random point
- Variance: $(\sigma k \ 2)$ = sample variance

- E Step: In the E-step, the step estimates the probability that each data point belongs to each cluster (Gaussian component)
- M Step: In the M-step, the step updates the model parameters to maximize the log-likelihood, using the calculations in the E-step.
- Generative Process:
 - Sample cluster k using $(\pi 1, \pi 2, ..., \pi k)$
 - Sample x from $N(\mu_k, \sigma k 2)$

Kernel Density Estimation(KDE)

- Kernel Density Estimation (KDE) is a non-parametric method used to estimate the probability density function of a random variable based on a finite set of data points. It smooths the distribution by placing a kernel on each data point and summing these kernels to produce a continuous estimate of the density.

Components of Equation

- Data Points (x_i) :
 - The observed data points used to estimate the density.
- Kernel Function(K):
 - A smooth, symmetric function that determines the shape of the influence of each data point.
- Bandwidth (h):
 - A smoothing parameter that controls the width of the kernel.
 - Smaller h creates a more detailed estimate but can overfit (too spiky).
 - Larger h smooths the estimate more but can underfit (too flat).
- Common Kernel Functions
 - Uniform
 - Triangle
 - Gaussian
 - Cosine
- Width Selection:
 - As stated above: Smaller h creates a more detailed estimate but can overfit and larger h smooths the estimate more but can underfit

Missing Data

- Types of Missing Data
 - MCAR: Missing Completely At Random.
 - Not related to:
 - Specific values
 - Observed responses

- MAR: Missing at Random. Not Related to Specific Values. Could be related to observed responses
- MNAR: Missing Not At Random
- Techniques for handling missing data:
 - Try to prevent the problem in the first place. This means careful study design, follow-up with participants, etc
 - Omit rows with missing data(reduces n)
 - Omit only when value is needed
 - Naive bayes, per-feature estimates
 - Mean substitution(per-feature)
 - Imputation: Use similar examples to guess missing values
 - Last observation carried forward
 - Useful for time series data